FIRST QUARTER, MARCH 2011                            VOLUME 25, NUMBER 2
Dave Mack

By Dave McCracken General Manager

 

 

 

 

 

The California Department of Fish & Game (DFG) released its long-awaited Draft Environmental Impact Statement (EIR) and Proposed new Suction Dredging Regulations on 28 February 2011. These, along with other information, can be found at DFG’s web site. The Drafts have also been sent to each of California’s counties and to other locations. For more information where to view the material, you can make contact with Mark Stopher13, Environmental Program Manager, California Department of Fish and Game, 601 Locust Street, Redding, CA 96001: Voice 530 225-2275; Fax 530 225-2391; Cell 530 945-1344.

This has triggered a 60-day public comment period which will end on 29 April 2011. Written comments can be submitted to Mark Stopher, Department of Fish and Game, 601 Locust Street, Redding, CA 96001. Or they can be faxed or emailed: Fax: (530) 225-2391; Email: dfgsuctiondredge@dfg.ca.gov.

Five public hearings have also been set so that interested people can voice comments. The format of the public hearings will be Open House Workshop between 5 ‘ 6 p.m; Welcome and Opening Remarks at 6:00 p.m.; Highlights of the Draft EIR at 6:20 p.m.; and Public Comment Period beginning at 6:45 p.m. Here are the meeting places and dates:

Santa Clarita: Wednesday, March 23 at Residence Inn by Marriott, 25320 The Old Rd., Santa Clarita, California.

Fresno: Thursday, March 24 at the California Retired Teachers Association, 3930 East Saginaw Way, Fresno, California.

Sacramento: Tuesday, March 29 at the California EPA Headquarters Building, Byron Sher Auditorium, 1001 ‘ I Street, Sacramento, California.

Yreka: Wednesday, March 30 at the Yreka Community Center, 810 N. Oregon, Yreka, California.

Redding: Thursday, March 31 at the Shasta Senior Nutrition Program, 100 Mercy Oaks Drive, Redding, California.

Preliminary Analysis: As there is very little time to get the word out on this, I have only read through the new regulations once so far. But I can tell you that the proposed changes are very substantial!

One of the problems is that many or most of the proposed changes are in locations elsewhere in the State that I am not familiar with. It is impossible for me to comment correctly about areas of the State that I know little about. So I will contain this initial review to areas where The New 49’ers have mining properties in Siskiyou County. I am assuming and hoping that other prospecting organizations and individuals who are more familiar with other areas will be organizing comments from elsewhere in the State.

Here follows an initial review of how the proposed new dredging regulations would affect New 49’er members along properties which we manage:

1) The current schedule published by DFG does not have new regulations in place before the fall of 2011. So we should assume the new regulations will mainly affect our 2012 season and beyond.

2) DFG is proposing to issue only 4,000 annual suction dredge permits, on a first come, first served basis. We will need to address how this will affect prior existing rights to ongoing mining projects which were shut down during the 2009 season.

3) The proposed regulations allow suction dredging with a 4-inch nozzle intake on the Klamath, Scott and Salmon Rivers between 1 July and September 30.

4) An onsite inspection is required of anyone who would like to operate a larger nozzle than 4-inches. Up to 8-inches will be allowed on the Scott and Klamath Rivers (but not Salmon River) with onsite inspection. Earlier permit applications required an increased fee for onsite inspections. Since annual fees are not being changed in this process, pre-existing fees should be adjusted according to inflation.

5) The proposed regulations will eliminate dredging on our Indian Creek, Elk Creek and Thompson Creek properties, and not allow dredging within 500 feet of most side tributaries which enter the Klamath. This means no dredging on the Klamath River within 500 feet of Negro Creek on K-9; it means no dredging within 500 feet of O’Neal Creek on K-10; it means no dredging within 500 feet of Portugese Creek on K-14; it means no dredging within 500 feet of Thompson Creek on K-16; it means no dredging within 500 feet of Indian Creek on K-21; It means no dredging within 500 feet of either Grider Creek or Elk Creek on K-22; and it means no dredging within 500 feet of Coon Creek or Swillup Creek on K-25A. There may be other Club properties affected by this that I don’t see, yet.

6) An onsite inspection is required of anyone who would like to operate a motorized winch.

7) No dredging anywhere within 3 feet of the edge of the waterway at the time the dredging is taking place.

8) Pump intake screens must be of a mesh or hole-size no greater than 3/32″. This may require a smaller mesh-size to surround some existing pump intakes.

I have not had time yet to study the full text of the Draft EIR to determine how DFG is justifying all these added restrictions to our suction dredging regulations. But, since public hearings will begin on 23 March, I did not want to delay getting the word out to you guys while I take the time to critique the Draft EIR.

For those of you who are interested in this, I advise you to either go up on the Internet and study the drafts for yourself, or find out where you can get hold of one at a library near you (call Mark Stopher at the numbers listed above). You can also go up on our Internet Forum and watch the threads. We have about 4,000 people on there now, and I am sure there will be plenty of ongoing discussion about what we don’t like and what the talking points ought to be.

I have absolutely no input yet about how the proposed regulations will affect other areas outside of our own. The Proposal places a big hit on our properties. Having said that, it could have been worse; they could be proposing to eliminate dredging altogether!

I am not saying it is good. I am saying it could have been worse. Now it is our turn within the process to try and change the things in the Proposal that we do not

like.

You will hear more from me about this on talking points (for written comments) in our April Newsletter. That will not be in time for public hearings. But since the hearings are really just listening sessions to determine how mad the public is; I suggest you go down there and give them an angry earful! Then you can follow up in April with written comments after we have had an opportunity to analyze the positions DFG has assumed in the Draft EIR.

Other Types of Mining During 2011

Just in case you do not know, it is only suction dredging within California’s active waterways that remains in suspension until new dredging regulations are finally adopted. This does not have anything to do with the other types of prospecting or mining that we do in California. Unaffected prospecting activities include panning, sniping & vack-mining, sluicing & high-banking, booming, electronic prospecting and other types of prospecting that do not use a suction nozzle within an active stream, river or creek. It also does not affect our group weekend projects.

There are no seasons imposed upon these other types of mining activity. In other words, you can do them at any time of the year.

Please be advised that these other types of mining activity along New 49’er properties are subject to a strict set of Surface Mining Operational Guidelines.

As the suction dredging seasons in California have been suspended, we have identified some fantastic suction dredging opportunities for our members in Southern Oregon.

Oregon Proposal to Increase Dredging Permit Fees!

Now; here is something else that we need to fight:

Oregon State Senators Atkinson, Haas and Bates have just introduced Oregon Senate Bill (SB) 765, which would tax suction gold dredgers by charging an additional $50 annual fee for in-state dredgers and an additional whopping $2,500 fee for non-resident dredgers for each county where the prospector intends to dredge!

Under emergency status, this bill is now moving on fast-track through the Oregon legislative process. If passed, it is possible these unreasonable fees could be in affect for the upcoming season!

At this moment, the bill is sitting in the Oregon State Senate Committee on Judiciary (Contact: Annola.DeJoug@stat.or.us or 503 986-1750). We sent out an Action Alert to our entire Email Action List (about 40,000 prospectors) as soon as the bill landed in the Judiciary Committee.

Postal mail is no longer an effective way to send out Action Alerts, because it all takes so long. This bill could already be in another committee or in front of the full senate before you guys even read the hard-copy version of our newsletter.

If you are interested in getting on our Email Action List, you do so by clicking on the Free Internet Newsletter link at the bottom-left of our home page.

With the Action Alerts, and the coordinated work being done on numerous fronts, quite a lot has already been done to combat this very bad bill. But we will need to do more; because Oregon is being managed largely by liberal politicians that are beholden to environmentalists.

We are presently interviewing lobbyists to represent the interests of small-scale miners in Oregon.

Yes, I know; it is all supposed to be about creating jobs. Right? In a published statement by Senator Atkinson, he makes his intention clear that he wants to keep non-resident prospectors out of Oregon. What?

By the way, Senator Atkinson migrated to Oregon from California! How does that make you feel?

Our Legal Fund Needs Help, Again!

It is not all bad news: Three new pro-mining bills have been introduced in California. Senate Bill 657 by Senator Gaines changes the law to exclude suction dredging from the ongoing administrative process which is reviewed in the new Proposal outlined above, and allow dredging under the earlier regulations until 2014. There is also a pro-rated refund for those of us who got knocked out of our dredging permits during 2009.

Assembly Bill 566 (Galgiani) and Senate Bill 792 (Steinberg) are the same bills which require California to formally acknowledge mineral-rich areas and prevent other priorities from eliminating mining as the primary use.

When I told you in January that we had some legal/political issues on our radar screen, it was mainly because we knew the Draft EIR and Proposed Regulations were soon to be released in California. We were not also expecting to fight a 100-fold permit fee increase in Oregon; and we were not expecting that pro-mining bills would be introduced which require our support if we want them to pass!

Therefore, it is a good thing that we were out in front of ourselves pulling a new fund-raiser together.

Our existing drawing will be for three ounces of beautiful Rogue River gold that I personally mined last season. We could really use your help right now!

 

The New 49’ers Prospecting Association, 27 Davis Road, Happy Camp, California 96039 (530) 493-2012 www.goldgold.com

 

 
Dave Mack

“This is the current status of the ongoing EIR process on suction dredging in California.”

This was a section of Dave’s March newsletter, which can be found here.

Progress on EIR:

The one thing that will allow us all the put our suction dredges back in the California waterways is completion of the EIR!

It is so important that the job must be done right. This is because anti-mining activists are also attacking us within the ongoing EIR process. They are trying to show that suction dredging creates really bad impacts, when it actually does not.

During the past several weeks, DFG has organized several formal meetings where interested parties (concerning suction dredging) have been able to meet and discuss the various issues which need to be worked out. The third and final of these meetings took place on 11 March. The New 49’ers, along with several other organizations within our industry, has very qualified representatives at these meetings. Anti-mining activists are also well represented in the process. There are specialists involved which represent all sides of the issues.

Through the discussions and other public input so far concerning suction dredging, the subject of mercury appears to be one of the most important and contentious issues so far.

While the authorities have proven that normal suction dredges recover 98% of the mercury that is sucked up into our sluice boxes, anti-mining activists are taking strong issue with the potential loss of 2% becoming a water quality violation. Yes; I know; you would think that the various government agencies and environmental organizations would be happy with a 98% rate of mercury recovery at no cost to the taxpayers. But nearly all of the focus remains upon the potential 2% loss of mercury which would have already been in the stream or river in the first place!

I personally have been involved with several federal projects during the past few years to help figure out how to recover 100% of the mercury (zero loss) when trying to remove mercury from submerged waste sites where hundreds or thousands of pounds of mercury were lost from historical gold mines.

During 2008, we developed a closed circuit dredging devise that is able to trap all of the sediments and all of the water used to create suction-power at the nozzle. We tested the system with assistance from the Bureau of Land Management and U.S. Geological Service, actually proving that by recirculating the same water over and over gain to dredge contaminated waste material (from the South Yuba River in California), we were able to capture and concentrate 100% of the finest particles of mercury that would presumably be lost from a normal suction dredge. The project was quite successful!

However, anti-mining activists have now taken the mercury concentration levels within our closed system (which was used for hours within a known waste site) to try and prove their case that suction dredgers are discharging high levels of mercury into active waterways all across the State. It never ceases to amaze me how low our enemies will stoop to try and get rid of us! Here, we were doing a really good thing by developing equipment that will help clean up serious waste sites. And anti-mining activists are trying to misuse the data to create a negative reflection upon all suction dredgers.

So I have personally invested quite a lot of time in trying to straighten this all out within the ongoing EIR process concerning normal dredging activity outside of hazardous waste sites. You can find my work on this subject on our web site. I highly recommend this as excellent reading if you want to get a feel for what we are really up against.

The New 49’ers27 Davis Road, Happy Camp, CA 96039 (530) 493-2012 www.goldgold.com

 
Dave Mack

“Here is a compilation of some published findings concerning the effects of suction dredging upon water quality…”

State Water Resources Control Board
Division of Water Quality
P.O. Box 100 Sacramento, California 95812-0100
Fax: 916-341-5620 email: commentletters@waterboards.ca.gov

GEOGRAPHICAL SCALE OF SMALL-SCALE SUCTION DREDGING

It has been observed that environmentalists opposing suction dredging use data gleaned from reports that studied effects of environmental perturbations that are occurring on a system-wide basis. For example, they would characterize the affects of turbidity from a suction dredge as if it would impact downstream organisms in a manner that system-wide high water flow events might. This approach is entirely inconsistent with the way in which suction dredges operate or generally impact their downstream environment.

The California Department of Fish and Game (1997) described typical dredging activities as follows’ “An individual suction dredge operation affects a relatively small portion of a stream or river. A recreational suction dredger (representing 90-percent of all dredgers) may spend a total of four to eight hours per day in the water dredging an area of 1 to 10 square meters. The average number of hours is 5.6 hours per day. The remaining time is spent working on equipment and processing dredged material. The area or length of river or streambed worked by a single suction dredger, as compared to total river length, is relatively small compared to the total available area.”

In the Oregon Siskiyou National Forest Dredge Study, Chapter 4, Environmental Consequences, some perspective is given to small-scale mining. “The average claim size is 20 acres. The total acreage of all analyzed claims related to the total acres of watershed is about 0.2 percent. The average stream width reflected in the analysis is about 20 feet or less and the average mining claim is 1320 feet in length. The percentage of land area within riparian zones on the Siskiyou National Forest occupied by mining claims is estimated to be only 0.1 percent.” The report goes on to say, “Over the past 10 years, approximately 200 suction dredge operators per season operate on the Siskiyou National Forest” (SNF, 2001).

A report from the U.S. Forest Service, Siskiyou National Forest (Cooley, 1995) answered the frequently asked question, “How much material is moved by annual mining suction dredge activities and how much does this figure compare with the natural movement of such materials by surface erosion and mass movement?” The answer was that suction dredges moved a total of 2,413 cubic yards for the season. Cooley (1995) used the most conservative values and estimated that the Siskiyou National Forest would move 331,000 cubic yards of material each year from natural causes. Compared to the 2413 (in-stream) cubic yards re-located by suction mining operations the movement rate by suction dredge mining would equal about 0.7% of natural rates.

It has been suggested that a single operating suction dredge may not pose a problem but the operation of multiple dredges would produce a cumulative effect that could cause harm to aquatic organisms. However, “No additive effects were detected on the Yuba River from 40 active dredges on a 6.8 mile (11 km) stretch. The area most impacted was from the dredge to about 98 feet (30 meters) downstream, for most turbidity and settelable solids (Harvey, B.C., K. McCleneghan, J.D. Linn, and C.L. Langley, 1982). In another study, “Six small dredges (<6 inch dredge nozzle) on a 1.2 mile (2 km) stretch had no additive effect (Harvey, B.C., 1986). Water quality was typically temporally and spatially restricted to the time and immediate vicinity of the dredge (North, P.A., 1993).

A report on the water quality cumulative effects of placer mining on the Chugach National Forest, Alaska found that, “The results from water quality sampling do not indicate any strong cumulative effects from multiple placer mining operations within the sampled drainages.” “Several suction dredges probably operated simultaneously on the same drainage, but did not affect water quality as evidenced by above and below water sample results. In the recreational mining area of Resurrection Creek, five and six dredges would be operating and not produce any water quality changes (Huber and Blanchet, 1992).

The California Department of Fish and Game stated in its Draft Environmental Impact Report that “Department regulations do not currently limit dredger densities but the activity itself is somewhat self-regulating. Suction dredge operators must space themselves apart from each other to avoid working in the turbidity plume of the next operator working upstream. Suction Dredging requires relatively clear water to successfully harvest gold ” (CDFG, 1997).

ELEVATED TURBIDITY

Suction dredging causes less than significant effects to water quality. The impacts include increased turbidity levels caused by re-suspended streambed sediment and pollution caused by spilling of gas and oil used to operate suction dredges (CDFG, 1997).

“Suction dredges, powered by internal combustion engines of various sizes, operate while floating on the surface of streams and rivers. As such, oil and gas may leak or spill onto the water’s surface. There have not been any observed or reported cases of harm to plant or wildlife as a result of oil or gas spills associated with suction dredging” (CDFG, 1997).

The impact of turbidities on water quality caused by suction dredging can vary considerably depending on many factors. Factors which appear to influence the degree and impact of turbidity include the amount and type of fines (fine sediment) in the substrate, the size and number of suction dredges relative to stream flow and reach of stream, and background turbidities (CDFG, 1997).

Because of low ambient levels of turbidity on Butte Creek and the North Fork American River, California, Harvey (1986) easily observed increases of 4 to 5 NTU from suction dredging. Turbidity plumes created by suction dredging in Big East Fork Creek were visible in Canyon Creek 403 feet (123 meters) downstream from the dredges (Somer and Hassler, 1992).

In contrast, Thomas (1985), using a dredge with a 2.5-inch diameter nozzle on Gold Creek, Montana, found that suspended sediment levels returned to ambient levels 100 feet below the dredge. Gold Creek is a relatively undisturbed third order stream with flows of 14 cubic feet per second. A turbidity tail from a 5-inch (12.7 cm) dredge on Clear Creek, California was observable for only 200 feet downstream. Water velocity at the site was about 1 foot per second (Lewis, 1962).

Turbidity below a 2.5 inch suction dredge in two Idaho streams was nearly undetectable even though fine sediment, less than 0.5 mm in diameter, made up 13 to 18 percent, by weight, of substrate in the two streams (Griffith and Andrews, 1981).

“During a dredging test carried out by the California Department of Fish and Game on the north fork of American River, it was concluded that turbidity was greatest immediately downstream, returning to ambient levels within 100 feet. Referring to 52 dredges studied, Harvey (1982) stated “…generally rapid recovery to control levels in both turbidity and settable solids occurred below dredging activity.”

Hassler (1986) noted “…during dredging, suspended sediment and turbidity were high immediately below the dredge, but diminished rapidly within distance downstream.” He measured 20.5 NTU 4 meters below a 5-inch dredge that dropped off to 3.4 NTU 49 meters below the dredge. Turbidity from a 4-inch dredge dropped from 5.6 NTU 4 meters below to 2.9 NTU 49 meters below with 0.9 NTU above. He further noted “…water quality was impacted only during the actual operation of the dredge…since a full day of mining by most Canyon Creek operators included only 2 to 4 hours of dredge running time, water quality was impacted for a short time.” Also “…the water quality of Canyon Creek was very good and only affected by suction dredging near the dredge when it was operated.”

The US Geological Survey and the Alaska Department of Natural Resources conducted a survey into dredging on Alaska’s Fortymile River, which is a river designated as a wild and scenic corridor. The study stated, “One dredge had a 10-inch diameter intake hose and was working relatively fine sediment on a smooth but fast section of the river. The other dredge had an 8-inch intake and was working coarser sediments in a shallower reach of the river. State regulations require that suction dredges may not increase the turbidity of the river by more than 5 nephelometric turbidity units (NTU), 500 feet (=150m) downstream. In both cases, the dredges were well within compliance with this regulation.”


http://www.akmining.com/mine/usgs1.htm

Samples were collected on a grid extending downstream from the dredges as they were operating and compared to measurements made upstream of the dredges. One dredge had a 10-inch diameter intake hose and was working relatively fine sediments on a smooth but fast section of the river. The results of the turbidity survey for the 10-inch dredge are shown on figure 2. Turbidity values behind the 8-inch dredge were lower, because the smaller intake was moving less sediment material, and because the coarser sediments being worked by the 8-inch dredge settled more rapidly.

The turbidity values found in the dredge studies fall within the range of turbidity values found for currently mined areas of the Fortymile River and many of its un-mined tributaries. Figure 3 shows the ranges of turbidity values observed along the horizontal axis, and the number of samples that fall within each of those ranges. For example, 25 samples had turbidity between 1.0 and 1.5 NTU, 22 of which were in a dredged area. The highest turbidity value was from an un-mined tributary to Uhler Creek; the lowest from a number of different tributaries to the North Fork. As seen on the figure, there is no appreciable difference in the distribution of turbidity values between mined and un-mined areas.

http://www.akmining.com/mine/usgs1.htm

In American studies, average turbidity levels have been shown to be between 5 and 15 NTU 5 meters below dredges. But even the maximum turbidity level measured in a clay pocket (51 NTU) fell below 10 NTU within 45 meters. Turbidity increases, from even large dredges on moderate sized streams, have shown to be fairly low, usually 25 NTU or less, and to return to background within 30 meters. The impact is localized and short lived; indicating minimum impact on moderate and larger waterways.

Within any waterway, sediment is primarily carried in suspension during periods of rainfall and high flow. This is an important point, as it indicates that a dredging operation has less, or at least no greater effect on sediment mobilization and mobility than a rain storm.”

All of these research studies have concluded that only a local significant effect occurs, with it decreasing rapidly downstream. The studies have been wide spread, having been undertaken in Alaska, Idaho, California, Montana and Oregon.

The science supports de minimus status for < 6-inch suction dredges. Turbidity is de minimus according to the U.S. Army Corps of Engineers.

“Effects from elevated levels of turbidity and suspended sediment normally associated with suction dredging as regulated in the past in California appear to be less than significant with regard to impacts to fish and other river resources because of the level of turbidity created and the short distance downstream of a suction dredge where turbidity levels return to normal” (CDFG, 1997).

Furthermore, individuals that have not, in fact, operated suction dredges may not realize that it is a self-limiting operation. The dredge operator must be able to see his work area to operate safely and manage the intake of the dredge nozzle. If high levels of turbidity were to flood the dredger’s work area and render him “blind” he would have to move the operation to another location.

INCREASING WATER TEMPERATURE

Responsible suction dredge miners do not dredge stream banks (it is illegal). Dredging occurs only in the wetted perimeter of the stream. Therefore, it is unlikely suction dredging will cause a loss of cover adjacent to the stream.

Solar radiation is the single most important energy source for the heating of streams during daytime conditions. The loss or removal of riparian vegetation can increase solar radiation input to a stream increasing stream temperature. Suction dredge operations are confined to the existing stream channel and do not affect riparian vegetation or stream shade (SNF, 2001).

Suction dredging could alter pool dimensions through excavation, deposition of tailings, or by triggering adjustments in channel morphology. Excavating pools could substantially increase their depth and increase cool groundwater inflow. This could reduce pool temperature. If pools were excavated to a depth greater than three feet, salmonid pool habitat could be improved. In addition, if excavated pools reduce pool temperatures, they could provide important coldwater habitats for salmonids living in streams with elevated temperatures (SNF, 2001).

Dredge mining had little, if any, impact on water temperature (Hassler, T.J., W.L. Somer and G.R. Stern, 1986). In addition, the Oregon Siskiyou Dredge Study states, “There is no evidence that suction dredging affects stream temperature” (SNF, 2001).

Increases in sediment loading to a stream can result in the stream aggrading causing the width of the stream to increase. This width increase can increase the surface area of the water resulting in higher solar radiation absorption and increased stream temperatures. Suction dredge operations are again confined to the existing stream channel and do not affect stream width (SNF, 2001).

Stream temperature can also increase from increasing the stream’s width to depth ratio. The suction dredge operation creates piles in the stream channel as the miner digs down into the streambed. The stream flow may split and flow around the pile decreasing or increasing the wetted surface for a few feet. However, within the stream reach that the miner is working in, the change is so minor that the overall wetted surface area can be assumed to be the same so the total solar radiation absorption remains unchanged. Suction Dredging results in no measurable increase in stream temperature (SNF, 2001).

“Small streams with low flows may be significantly affected by suction dredging, particularly when dredged by larger dredges (Larger than 6 inches) (Stern, 1988). However, the California Department of Fish and Game concluded, “current regulations restrict the maximum nozzle size to 6 inches on most rivers and streams which, in conjunction with riparian habitat protective measures, results in a less than significant impact to channel morphology” (CDFG, 1997).

WATER CHEMISTRY

Concern has been raised that small-scale dredge operations may increase the metal load of the surface waters. Whereas dredge operations do re-suspend the bottom sediment, the magnitude of this disturbance on stream metal loading was unknown. It was unknown what affect the dredge operations may have on the transport and redistribution of metals-some of which (for example, arsenic, copper, and zinc) have environmental importance.

The U.S. Geological Survey and the Alaska Department of Natural Resources cooperated in a project, on Fortymile River, to provide scientific data to address these questions. This river is designated a Wild and Scenic Corridor by the Alaska National Interest Lands Conservation Act. Current users of the river include placer mine operators, as well as boaters and rafters. Along the North Fork Fortymile River, and just below its confluence with the South Fork, mining is limited to a few small suction dredges which, combined, produce as much as a few hundred ounces of gold per year. In this area, some potential environmental concerns have been raised associated with the mining activities, including increased turbidity of the river water; adverse impact on the overall chemical quality of the river water; and potential additions of specific toxic elements, such as arsenic, to the river during mining operations.

Field measurements were made for pH, turbidity, electrical conductivity (a measure of the total dissolved concentrations of mineral salts), and stream discharge for the Fortymile River and many of its tributaries. Samples were collected at the same time for chemical analyses, including trace-metal analyses

Water-quality samples were collected at three points 200 feet behind each of the two operating suction dredges. One sample was collected on either side of the plume, and one in the center of the plume. The samples were passed through a filter with a nominal pore size of 0.45 micrometers and acidified to a pH less than about 2. Results are shown in the following table. Samples 1A, 1C, 2A, and 2C are from either side of the plume behind dredges 1 and 2, respectively. Samples 1B and 2B are from the center of each plume. All concentrations given are in micrograms per liter, except pH, which is expressed in standard units.

The data show similar water-quality values for samples collected within and on either side of the dredge plumes. Further, the values shown in the table are roughly equal to or lower than the regional average concentrations for each dissolved metal, based on the analyses of 25 samples collected throughout the area. Therefore, suction dredging appears to have no measurable effect on the chemistry of the Fortymile River within this study area. We have observed greater variations in the natural stream chemistry in the region than in the dredge areas (Wanty, R.B., B. Wang, and J. Vohden. 1997).

Water Quality Data

A final report from an EPA contract for analysis of the effects on mining in the Fortymile River, Alaska stated, “This report describes the results of our research during 1997 and 1998 into the effects of commercial suction dredging on the water quality, habitat, and biota of the Fortymile River…. The focus of our work on the Fortymile in 1997 was on an 8-inch suction dredge (Site 1), located on the mainstem… At Site 1, dredge operation had no discernable effect on alkalinity, hardness, or specific conductance of water in the Fortymile. Of the factors we measured, the primary effects of suction dredging on water chemistry of the Fortymile River were increased turbidity, total filterable solids, and copper and zinc concentrations downstream of the dredge. These variables returned to upstream levels within 80-160 m downstream of the dredge. The results from this sampling revealed a relatively intense, but localized, decline in water clarity during the time the dredge was operating” (Prussian, A.M., T.V. Royer and G.W. Minshall, 1999).

“The data collected for this study help establish regional background geochemical values for the waters in the Fortymile River system. As seen in the chemical and turbidity data any variations in water quality due to the suction dredging activity fall within the natural variations in water quality” (Prussian, A.M., T.V. Royer and G.W. Minshall, 1999).

REMOVAL OF MERCURY FROM THE ENVIRONMENT

Looking for gold in California streams and rivers is a recreational activity for thousands of state residents. As these miners remove sediments, sands, and gravel from streams and former mine sites to separate out the gold, they are also removing mercury. This mercury is the remnant of millions of pounds of pure mercury that was added to sluice boxes used by historic mining operations between 1850 and 1890. Modern day small-scale gold suction dredgers do not use mercury to recover gold during the operation of the dredge. Therefore, any gold that would be found in their possession would be that which was extracted from the stream or river they are working.

Taking mercury out of streams benefits the environment. Efforts to collect mercury from recreational gold miners in the past, however, have been stymied due to perceived regulatory barriers. Disposal of mercury is normally subject to all regulations applicable to hazardous waste.

In 2000, EPA and California’s Division of Toxic Substance Control worked in concert with other State and local agencies to find the regulatory flexibility needed to collect mercury in a simple and effective manner. In August and September, 2000 the first mercury “milk runs” collected 230 pounds of mercury. A Nevada County household waste collection event held in September 2000 collected about 10 pounds of mercury. The total amount of mercury collected was equivalent to the mercury load in 47 years worth of wastewater discharge from the city of Sacramento’s sewage treatment plant or the mercury in a million mercury thermometers. This successful pilot program demonstrates how recreational gold miners and government agencies can work together to protect the environment (US EPA, 2001).

Mercury occurs in several different geochemical forms, including elemental mercury, ionic (or oxidized) mercury, and a suite of organic forms, the most important of which is methylmercury. Methylmercury is the form most readily incorporated into biological tissues and is most toxic to humans. The process of mercury removal by suction dredging does not contaminate the environment because small-scale suction dredging removes elemental mercury. Removal of elemental mercury before it can be converted, by bacteria, to methylmercury is a very important component of environmental and human health protection provided as a secondary benefit of suction dredging.

THE REAL ISSUE

The issue of localized conflict with suction dredgers and other outdoor recreational activities can be put into a more reasonable perspective using the data provided at the beginning of this report. For example, the total acreage of all analyzed claims related to the total acres of watershed is about 0.2 percent. The percentage of land area within riparian zones on the Siskiyou National Forest occupied by mining claims is estimated to be only 0.1 percent.” The report goes on to say, “Over the past 10 years, approximately 200 suction dredge operators per season operate on the Siskiyou National Forest (SNF, 2001).

The issue against suction dredge operations in the streams of the United States appears to be less an issue of environmental protection and more of an issue of certain organized individuals and groups being unwilling to share the outdoors with others without like interests.

Management of the Fortymile River region (a beautiful, wild and scenic river in the remote part of east-central Alaska) and its resources is complex due to the many diverse land-use options. Small-scale, family-owned gold mining has been active on the Fortymile since the “gold rush” days of the late 1880’s. However, in 1980, the Fortymile River and many of its tributaries received Wild and Scenic River status. Because of this status, mining along the river must compete with recreational usage such as rafting, canoeing, and fishing.

A press release from the U. S. Geological Survey stated, in part, the following, “The water quality of the Fortymile River-a beautiful, …has not been adversely impacted by gold placer mining operations according to an integrated study underway by the U.S. Geological Survey and the Alaska Department of Natural Resources.

Violation of mining discharge regulations would close down the small-scale mining operations. No data existed before this study to establish if the mining was degrading the water quality. However, even with the absence of data, environmental groups were active to close down mining on the river citing unsubstantiated possible discharge violations.

This study has found no violations to date to substantiate closure of the small-scale mining operations. The result is a continuance of a way of life on the last American frontier.” (U.S. Geological Survey October 27, 1998). I have no doubt that this is the real issue currently facing small-scale gold suction dredgers in California.

Suction dredges do not add pollution to the aquatic environment. They merely re -suspend and re-locate the bottom materials (overburden) within the river or stream.

I hope this scientific research information I have provided will be helpful in your efforts regarding suction dredge mining and water quality. I thank you for this opportunity to submit this data.

LITERATURE CITED

CDFG, 1997. draft Environmental Impact Report: Adoption of Amended Regulations for Suction Dredge Mining. State of California, The Resource Agency, Department of Fish and Game

Cooley, M.F. 1995. Forest Service yardage Estimate. U.S. Department of Agriculture, U.S. Forest Service, Siskiyou National Forest, Grants Pass, Oregon.

Griffith, J.S. and D.A. Andrews. 1981. Effects of a small suction dredge on fishes and aquatic invertebrates in Idaho streams. North American Journal of Fisheries Management 1:21- 28.

Harvey, B.C., K. McCleneghan, J.D. Linn, and C.L. Langley, 1982. Some physical and biological effects of suction dredge mining. Lab Report No. 82-3. California Department of Fish and Game. Sacramento, CA.

Harvey, B.C. 1986. Effects of suction gold dredging on fish and invertebrates in two California streams. North American Journal of Fisheries Management 6:401-409.

Hassler, T.J., W.L. Somer and G.R. Stern. 1986. Impacts of suction dredge mining on anadromous fish, invertebrates and habitat in Canyon Creek, California. California Cooperative Research Unit, U.S. Fish and Wildlife Service, Humbolt State University. Cooperative Agreement No 14-16-0009-1547.

Huber and Blanchet, 1992. Water quality cumulative effects of placer mining on the Chugach National Forest, Kenai Peninsula, 1988-1990. Chugach National Forest, U.S. Forest Service, Alaska Region, U.S. Department of Agriculture.

Lewis, 1962. Results of Gold Suction Dredge Investigation. Memorandum of September 17, 1962. California Department of Fish and Game, Sacramento, CA. North, P.A., 1993. A review of the regulations and literature regarding the environmental impacts of suction gold dredging. U.S. Environmental Protection Agency, Region 10, Alaska Operations Office. EP 1.2: G 55/993.

Prussian, A.M., T.V. Royer and G.W. Minshall, 1999. Impact of suction dredging on water quality, benthic habitat, and biota in the Fortymile River, Resurrection Creek, and Chatanika River, Alaska, FINAL REPORT. US Environmental Protection Agency, Region 10, Seattle, Washington.

SNF, 2001. Siskiyou National Forest, Draft Environmental Impact Statement: Suction Dredging Activities. U.S. Department of Agriculture, U.S. Forest Service, Siskiyou National Forest, Medford, OR.

Somer, W.L. and T.J. Hassler. 1992. Effects of suction-dredge gold mining on benthic invertebrates in a northern California stream. North American Journal of Fisheries Management 12:244-252

Stern, 1988. Effects of suction dredge mining on anadromous salmonid habitat in Canyon Creek, Trinity County, California. M.S. Thesis, Humbolt State University, Arcata, CA.

Thomas, V.G. 1985. Experimentally determined impacts of a small, suction gold dredge on a Montana stream. North American Journal of Fisheries Management 5:480-488.

US EPA, 2001. Mercury Recovery from Recreational Gold Miners. http://www.epa.gov/region09/cross_pr/innovations/merrec.html

Wanty, R.B., B. Wang, and J. Vohden. 1997. Studies of suction dredge gold-placer mining operations along the Fortymile River, eastern Alaska. U.S. Geological Survey Fact Sheet FS-154-97.

 

 

By Dave McCracken, General Manager

6 December 2009

The State of California recently passed a law which has placed a statewide moratorium on suction dredging in California until the Department of Fish & Game (DFG) completes an updated Environmental Impact Report (EIR). This EIR process has already begun. Click here for more information.

The Environmental Impact Report (EIR) on suction dredging in California is being completed through a CEQA Process (California Environmental Quality Act); which, based upon best available science, requires the authorities to identify any important concerns (measured against some “baseline”). Then, those concerns must be addressed through implementation of regulations which are least-restrictive upon people and economic activity. This is not new to us, since we actively participated in the earlier EIR which was completed during 1994.

DFG began the public process on 26 October by circulating a 107-page Notice of Preparation (NOP). The NOP is mostly made up of an “Initial Study Suction Dredging Program,” which is also being referred to as the “Initial Scoping Document.” This formal review has basically identified every known potential negative impact which could be associated with suction dredging.

The Scoping Document has been sent around to all or most government agencies, environmental groups, mining interests and other known “stakeholders” who may have some interest in the progress and outcome of the EIR. Interested parties were provided an opportunity to comment on the Initial Scoping Document. The deadline for written comments passed on 3 December. This was the initial opportunity for us to make comments voicing our concerns about how the process is moving forward or any initial conclusions DFG has made that we believe are incorrect within the Scoping Document.

The New 49’ers submitted written comments expressing several areas of concern. We have created a special page on our web site so you can view our comments, and so you can follow along and participate in this important process as it moves forward.

One of our most important initial concerns is that within the Scoping Document, DFG says that they intend to use the existing moratorium (on suction dredging) to create a baseline of “no dredging activity” in order to gauge the importance of any potential impacts.

Everything leading up to this process (years of legal wrangling) resulted in several court decisions and Settlement Agreements whereby DFG pledged to perform the EIR specifically for the purpose of determining if existing suction dredging regulations have been providing adequate protection for fish. The moratorium has stopped existing dredging activity only until existing regulations are re-evaluated. More than 2,500 suction dredge permits were issued by California during our 2009 season. But DFG has decided to create a baseline in the EIR to evaluate all of the potential impacts against zero activity, choosing to completely ignore the existence of our $60million annual business! We have had a viable suction dredge industry in California for the past 30 years. Now DFG is going to try and evaluate future impacts against a baseline of zero?

Do you guys get the idea that the State of California is deliberately trying to kill off its own private business, or is it just me?

We felt this issue was so important, and because there are serious legal implications, we paid our attorneys to author comments on our behalf concerning this particular issue.

Another major problem in the Scoping Document was in the way DFG has projected volumes of streambed which are processed by suction dredgers. Basically, they took the volume capacities advertised by the dredge manufacturers and multiplied those by an average number of hours per day, multiplied by so many days per week, multiplied by the number of permits they sold in 2008. You guys get the idea? DFG thinks we just go down and suck up sediments which mostly just pass through a suction nozzle! They have no idea that we are taking apart compacted streambeds in which 85% of the material must be moved out of the excavation by hand (or by power winch in the case of large rocks) because it is too large to pass through the nozzle.

This is proof-positive that the people who are spending $1.5 million performing this Environmental Impact Report on suction dredging have no direct experience of their own with the activity! No wonder California is bankrupt!

Since projected volume capacities are what DFG will use to place a negative value upon the potential impacts from suction dredges, and their estimates are many magnitudes greater than what really happens in dredging, I personally devoted some substantial work into comments on this subject.

We also made comments on other very important issues. For example, the Scoping Document seems to indicate that DFG is going to completely ignore all of the biological discussions and conclusions which evolved from the EIR which we worked so hard to complete in 1994. So, contrary to their promises in Court, rather than take a hard look at the well-established, earlier biological conclusions to see if they are providing adequate protection for fish, it appears that DFG now intends to scrap all the earlier work and begin the entire biological discussion over again from scratch. Here are our initial comments about that.

On top of that, despite repeated formal Declarations to the courts and California legislature that they have new data which suggests harm to fish, we cannot find anything new in the Scoping Document. It looks to us like they just want to rework all the same old arguments, once again.

DFG concerns over mercury are the exception to my statement in the paragraph above. This all stems from a study which the State performed several years ago where they proved that a standard suction dredge recovered 98% of the mercury which they sucked up out of an established mercury hot spot (there were visible pools of mercury on the bedrock). Of course, little or no credit is given to the 98% clean-up rate. All of the attention is on the 2% loss of mercury in the tailings. This is not mercury the dredgers put into the stream, have you; the mercury was already in the stream. The State’s argument is that because the dredge sucked it up in the first place, it is a water quality violation to discard any mercury back into the waterway. Leave it to the State to decide that it is better to not remove 98% of the mercury which dredgers rarely encounter!

Environmentalists argue that because a suction dredge only recovered 98% of the mercury out of an established waste site, all suction dredging should be stopped across the entire state! We submitted comments on this from myself and also from some other specialists in this field.

We also felt it important to comment on the continuous misuse of the term “recreational” in relation to mineral exploration and mining activity. It is common for State officials to confuse small-scale gold exploration activities as just another recreation, no different than any other. Federal law provides every American the right to search for minerals on any level which you choose to – and to claim valuable deposits which you find on the public lands. Whether or not you are enjoying the activity has nothing to do with it. Even a total anti-mining activist has the right to claim a valuable deposit if he stumbles upon one. But he or she would argue that you don’t have the right simply because you are enjoying the activity? Give me a break!

I encourage you to take the time to read our comments if you can find the time.

We have done our best to set the record right. Now we will wait and see how seriously DFG will entertain our comments. The more seriously they treat them now, the less of a battle we will have later if they decide to just skip over them as unimportant.

The purpose of the CEQA process is to get at the truth. But we have seen time and time again (nearly every time) where truth and justice has not been part of the State process, so we will have to remain vigilant.

A draft EIR is the next step in the process. We can expect to see that during this next summer or fall (2010). That will be followed by another opportunity for public input. A final EIR is not expected until spring 2011 at the earliest.

Completing the Administrative process is the one thing that surely is going to get dredgers back in the California waterways. We are right on top of this.

 

Tags